Module and Programme Catalogue

Search site

Find information on

2005/06 Undergraduate Module Catalogue

PHYS2042 Quantum Mechanics

10 creditsClass Size: 999

Module manager: Dr M G Brereton
Email: m.g.brereton@leeds.ac.uk

Taught: Semester 1 (Sep to Jan) View Timetable

Year running 2005/06

Pre-requisites

PHYS1051 (Vibrations and Waves) PHYS1150 (Basic Mathematical Methods) PHYS1160 (Differential Calculus and Infinite Series) or equivalents

This module is not approved as an Elective

Objectives

By the end of the module you should be able to:
- write down the time dependent and time independent Schrödinger Equations;
- recall the form of and properties of wave functions, eigenfunctions and probability functions;
- derive the form of the wavefunction for a particle confined in an infinite square well;
- recall the form of the wavefunctions for other confining potentials;
- understand and use the Heisenberg Uncertainty Principle;
- use operators to calculate expectation values;
- describe the concepts of symmetrical and antisymmetrical wave functions;
- explain in general terms the Pauli Exclusion Principle and use spin functions;
- describe the quantum mechanical model of the hydrogen atom;
- describe the electron configuration of atoms and their spectra;
- describe the quantum mechanical origins of ionic and covalent bonds.

Skills outcomes
Ability to model a physical problem.
Ability to solve physical problems using using mathematics.Ability to model a physical problem.
Ability to solve physical problems using using mathematics.


Syllabus

The time dependent and time independent Schrödinger equations.The wave function and probability distribution function for a single particle; dynamical variables, operators, eigenvalues equations and expectation values; the Uncertainty Principle; the time-independent one-dimensional Schrödinger equation and its use to describe the behaviour of a particle confined to (a) an infinite square well potential, and (b) a finite square well potential; expectation values; barrier penetration; alpha particle emission; the harmonic potential, creation and destruction operators, stationary and non stationary states.
Identical particles and the symmetry of the wavefunction. Bosons and fermions, spin functions. the Pauli Exclusion Principle.
The hydrogen atom: solutions of the Schrödinger equation; quantum numbers; wave functions; the concept of magnetic moment and electron spin; the Stern-Gerlach experiment.
The Periodic Table: electron configuration; ionisation energies.
Molecules: Molecular bonding, ionic, covalent.

Teaching methods

Due to COVID-19, teaching and assessment activities are being kept under review - see module enrolment pages for information

Lectures: 22 x 1 hour;


Tutorials.: 11 x 1 hour.

Private study

Preparation for tutorials, continuous assessment, reading and exams: 67 hours.

Opportunities for Formative Feedback

3 x marked assignments.

Methods of assessment

Due to COVID-19, teaching and assessment activities are being kept under review - see module enrolment pages for information

1 x 2 hour written examination at the end of the semester: 70%;
Continuous assessment/assignments: 30%.

Reading list

The reading list is available from the Library website

Last updated: 19/04/2005

Disclaimer

Browse Other Catalogues

Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD

© Copyright Leeds 2019