Module and Programme Catalogue

Search site

Find information on

2011/12 Undergraduate Module Catalogue

MATH3024 Homotopy and Surfaces

15 creditsClass Size: 60

Module manager: Professor John Wood

Taught: Semester 2 View Timetable

Year running 2011/12

Pre-requisite qualifications

MATH1022 and (MATH1035 or MATH1050)

This module is approved as an Elective

Module summary

This module develops some intuitive geometrical ideas about the way surfaces may be described and shows how to develop algebraic methods for classifying them. This leads to the idea of associating a group, the fundamental group, with any topological space. Results can be applied to obtain non-trivial, and even surprising, results in various branches of mathematics.


To provide a first introduction to elementary ideas from algebra and topology that are linked in modern mathematical developments. The basic concept studied is that of the fundamental group of a polyhedral surface.

On completion of this module, students should be able to:
(a) classify a given surface;
(b) calculate the fundamental group of some simple surfaces;
(c) use a knowledge of the fundamental group to obtain results in algebra, analysis and topology.


The topics covered are:
1. Subsets of products and quotients of such subsets, continuous maps and homeomorphisms between these.
2. Polyhedral surfaces. Representation by sentences. Equivalent sentences. Classification of sentences by canonical words.
3. Geometrical description of surfaces represented by canonical words, Euler characteristic.
4. Fundamental group. Path space. Homotopy of paths. Composition of paths.
5. Homotopies of maps. Deformation retracts.
6. Calculation of (S1). Path lifting theorem. Homotopy lifting theorem.
7. Applications from among: Brouwer's fixed point theorem. Borsuk-Ulam theorem. Fundamental theorem of algebra. Jordan curve theorem, Pancake and Ham Sandwich theorems.
8. Computations of fundamental groups. Finitely presented groups. Van Kampen's theorem. Classification of surfaces.

Teaching methods

Delivery typeNumberLength hoursStudent hours
Private study hours117.00
Total Contact hours33.00
Total hours (100hr per 10 credits)150.00

Opportunities for Formative Feedback

Regular problem solving assignments

Methods of assessment

Exam typeExam duration% of formal assessment
Standard exam (closed essays, MCQs etc)2 hr 30 mins100.00
Total percentage (Assessment Exams)100.00

Normally resits will be assessed by the same methodology as the first attempt, unless otherwise stated

Reading list

The reading list is available from the Library website

Last updated: 27/02/2012


Browse Other Catalogues

Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD

© Copyright Leeds 2019