Module and Programme Catalogue

Search site

Find information on

2021/22 Taught Postgraduate Module Catalogue

BMSC5125M Advanced Data Analysis Techniques

15 creditsClass Size: 40

Module manager: Dr Jamie Johnston
Email: J.Johnston@leeds.ac.uk

Taught: Semester 1 (Sep to Jan) View Timetable

Year running 2021/22

Pre-requisite qualifications

BSc in a STEM subject

This module is not approved as an Elective

Module summary

Modern biomedical sciences often generate large and complex datasets which require sophisticated analysis techniques to fully explore their potential. This module will provide practical experience in advanced data analysis techniques that are employed in the neurosciences. The emphasis will be on the range of analysis techniques available, their principles and application. Students will have significant experience employing these techniques on real data sets.

Objectives

The objectives of the module are:
- To equip students with a basic understanding of programming for analysis of large/complex data sets;
- To provide students with practical experience in advanced analysis techniques;
- To make students aware of the considerations needed when employing advanced data analysis techniques.

Learning outcomes
On completion of the module, students should be able to:
1. Analyse and manipulate large datasets using Python;
2. Be proficient in data visualisation;
3. Understand the interplay between sampling, noise and filtering;
4. Apply pre-processing techniques. e.g. image segmentation, video tracking;
5. Perform relevant analytical and statistical test, e.g. time-frequency analysis, classification and dimensionality reduction techniques.

Skills outcomes
Computational tools for data analysis.


Syllabus

This module will cover the following areas:

Computational tools for programming, analysis and visualisation – (All students)
- Python and relevant libraries.

Data acquisition, pre-processing and frequency analysis – (Neuroscience, Biomedical Science and SES students)
- Sources and characteristics of noise;
- Sampling theorem;
- Filtering;
- FFT, time frequency, coherence.

Image analysis (Neuroscience, Biomedical Science and SES students)
- Segmentation of time varying and static images;
- Object tracking.

Advanced statistical techniques (All students)
- Binary classifiers and ROC;
- Clustering;
- Dimensionality reduction;
- Classification.

Teaching methods

Due to COVID-19, teaching and assessment activities are being kept under review - see module enrolment pages for information

Delivery typeNumberLength hoursStudent hours
Practical33.009.00
Practical41.004.00
Tutorial42.008.00
Independent online learning hours29.00
Private study hours100.00
Total Contact hours21.00
Total hours (100hr per 10 credits)150.00

Private study

Independent online learning: Using self-directed learning guides in Jupyter (python notebooks) the students will learn how to import, manipulate and visualise data using the Bokeh library. This will be supported during the introductory lecture and during the practical sessions. A formative assessment will determine progress with this learning objective.
Private study: this includes the time associated with background reading for each tutorial/practical, and the time associated with the preparation and completion of the two assessments.

Opportunities for Formative Feedback

Formative feedback will be given on the data plotting and visualisation task. Monitoring of student progress will occur during the supervised practical sessions where students will be able to show completed jupyter notebooks.

Methods of assessment

Due to COVID-19, teaching and assessment activities are being kept under review - see module enrolment pages for information


Coursework
Assessment typeNotes% of formal assessment
ReportProject report: open-ended exercise, where a student will employ all their learned skills to analyse a given data set, make figures and draw conclusions from their analysis.70.00
In-course MCQ30 question MCQ test in Minerva30.00
In-course AssessmentFormative assessment: students will be set a data plotting and visualisation task and will receive feedback.0.00
Total percentage (Assessment Coursework)100.00

The standard release time for an MCQ/MRQ in Minerva will be 24hrs. Further guidance on the assessment will be provided in the module handbook/Minerva. If a resit is required the project report will be resubmitted and addressed by the same methodology as the first attempt.

Reading list

There is no reading list for this module

Last updated: 03/12/2021

Disclaimer

Browse Other Catalogues

Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD

© Copyright Leeds 2019