Module and Programme Catalogue

Search site

Find information on

2023/24 Taught Postgraduate Module Catalogue

PHYS5100M Winds, Bubbles and Explosions

15 creditsClass Size: 60

Module manager: Dr Julian Pittard
Email: J.M.Pittard@leeds.ac.uk

Taught: Semester 1 (Sep to Jan) View Timetable

Year running 2023/24

Module replaces

PHYS3270 Winds, Bubbles and Explosions in Galaxies

This module is not approved as an Elective

Module summary

Massive stars inject radiative and mechanical energy into the interstellar medium via their intense photon fluxes, powerful winds, and SN explosions. This “feedback” is at least partially responsible for dispersing the molecular gas from massive star-forming regions. On larger scales, the energy injected from groups of massive stars powers galactic fountains and superwinds. This course covers the theory behind these processes, and the necessary background to understand them.

Objectives

This module provides the fundamental knowledge for understanding how massive stars affect their environment.

Learning outcomes
Students will be able to demonstrate knowledge, understanding and application of:

1. The Interstellar Medium
2. Gas dynamics, shocks, radiative cooling
3. Photoionization/recombinaton
4. Supernova remnants, wind-blown bubbles, AGN and jets


Syllabus

Overview. Injection of energy & momentum. Physical state of gas in the galaxy. Introduction to gas dynamics. Shock fronts. The Rankine-Hugoniot conditions. Physics of shocks and radiatively excited gases. Cooling processes. The cooling curve. The ISM phase curve. Effects of cooling behind shock fronts. Interaction of shocks with clouds. Photoionization and recombination. Ionization balance. Ionization fronts and expanding HII regions. Stellar explosions. The Sedov phase of supernova remnant evolution. Transition to the momentum conserving phase. The range of supernova remnants in interstellar gas. Wind blown bubbles. The two-shock flow pattern. Energy driven bubbles blown by single stars. Cluster winds. Galactic scale effects of winds and explosions into stratified media. The galactic disc-halo connection. Super bubbles and blow out. Starburst galaxies. Superwinds. Evolution of supernova remnants near an AGN. Properties and behaviour of astrophysical jets.

Teaching methods

Delivery typeNumberLength hoursStudent hours
Lecture331.0033.00
Private study hours117.00
Total Contact hours33.00
Total hours (100hr per 10 credits)150.00

Opportunities for Formative Feedback

Workshops

Methods of assessment


Coursework
Assessment typeNotes% of formal assessment
In-course AssessmentRegular Coursework20.00
Total percentage (Assessment Coursework)20.00

Normally resits will be assessed by the same methodology as the first attempt, unless otherwise stated


Exams
Exam typeExam duration% of formal assessment
Standard exam (closed essays, MCQs etc)2 hr 30 mins80.00
Total percentage (Assessment Exams)80.00

Students will have to complete an in-person exam at the end of the module. This will take place during the examinations period at the end of the semester and will be time bound. Resits will be in the standard exam format.

Reading list

The reading list is available from the Library website

Last updated: 16/05/2023 16:47:49

Disclaimer

Browse Other Catalogues

Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD

© Copyright Leeds 2019