Module and Programme Catalogue

Search site

Find information on

2019/20 Taught Postgraduate Programme Catalogue

MSc Advanced Computer Science (Artificial Intelligence)

Programme code:MSC-ACS/AI-FUCAS code:
Duration:12 Months Method of Attendance: Full Time
Programme manager:Dr Brandon Bennett Contact

Total credits: 180

Entry requirements:

A minimum UK Upper Second Class Honours (2.1) degree or equivalent in computing or a scientific subject with significant computing component;
- A pass at GCSE level English Language (grade C or above);
- International students must have an English language qualification at a suitable level: IELTS 6.5 or equivalent.

School/Unit responsible for the parenting of students and programme:

School of Computing

Examination board through which the programme will be considered:

School of Computing

Relevant QAA Subject Benchmark Groups:


Programme specification:

On completion of the programme students should be a able to demonstrate:

- a systematic understanding of the theory and practice of designing and implementing computer systems
- proficiency in the technical and programming skills required to design and implement computer systems;
- a thorough knowledge and skills base in a number of advanced topics within the domain of computer science;
- an in-depth knowledge of the essential principles and practices used in the effective design, implementation and usability of Intelligent Systems;
- the ability to apply these principles and practices to tackle a significant problem within the main project;
- an in-depth understanding of an area of specialisation, gained during the main project;
- be confident in applying the research methodology adopted for the main project on new problems;
- be prepared for further study either in the context of professional development or through further engagement in higher education.

The programme will:

- situate the study of Intelligent Systems within the general context of computational modelling and complex systems.
- give a broad perspective on Intelligent systems, covering evolutionary models, statistical and symbolic machine learning algorithms, qualitative reasoning, image processing, language understanding, and bio-computation.
-be rooted in established research strengths of the School and will offer the opportunity for students to work as integral members of our research groups during their main project.
- prepare graduates for graduate careers in the IT industry and other contexts or for further study either in the context of continuing professional development or through further engagement in higher education.

Year1 - View timetable

[Learning Outcomes, Transferable (Key) Skills, Assessment]

Compulsory modules:

Candidates will be required to study the following compulsory modules:

COMP5200MMSc Project60 credits1 Jan to 30 Sep
COMP5400MBio-Inspired Computing15 creditsSemester 2
COMP5450MKnowledge Representation and Reasoning15 creditsSemester 1
COMP5623MArtificial Intelligence15 creditsSemester 2

Optional modules:

Candidates will be required to study 75 credits from the following lists of optional modules:

COMP5111MBig Data Systems15 creditsSemester 2
COMP5122MData Science15 creditsSemester 1
COMP5710MAlgorithms15 creditsNot running in 201920
COMP5811MParallel and Concurrent Programming15 creditsSemester 1
COMP5840MData Mining and Text Analytics15 creditsSemester 2
COMP5850MCloud Computing15 creditsSemester 2
COMP5860MSemantic Technologies and Applications15 creditsSemester 2
COMP5911MAdvanced Software Engineering15 creditsSemester 1
COMP5920MScheduling15 creditsSemester 2
COMP5930MScientific Computation15 creditsSemester 1
COMP5940MGraph Theory: Structure and Algorithms15 creditsSemester 2

Students may study no more than 30 credits from this list:

COMP3211Distributed Systems10 creditsSemester 1
COMP3222Mobile Application Development10 creditsSemester 2
COMP3611Machine Learning10 creditsSemester 1
COMP3631Intelligent Systems and Robotics20 creditsSemester 1
COMP3771User Adaptive Intelligent Systems10 creditsSemester 2
COMP3910Combinatorial Optimisation10 creditsSemester 2
COMP3940Graph Algorithms and Complexity Theory10 creditsSemester 1

Last updated: 02/10/2019


Browse Other Catalogues

Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD

© Copyright Leeds 2019