2021/22 Taught Postgraduate Module Catalogue
COMP5611M Machine Learning
15 creditsClass Size: 300
Module manager: Dr Ali Gooya
Email: a.gooya@leeds.ac.uk
Taught: 1 Sep to 31 Jan (adv yr), Semester 1 (Sep to Jan), Semester 2 (Jan to Jun) View Timetable
Year running 2021/22
This module is not approved as an Elective
Objectives
On completion of this module, students should be able to:• list the principal algorithms used in machine learning, and derive their update rules
• appreciate the capabilities and limitations of current approaches;
• evaluate the performance of machine learning algorithms;
• use existing implementation(s) of machine learning algorithms to explore data sets and build models.
Syllabus
Topics selected from:
Neural networks, decision trees, support vector machines, Bayesian learning, instance-based learning, linear regression, clustering, reinforcement learning, deep learning.
Methods for evaluating performance.
Examples will be drawn from simple problems that arise in studies of robotics and computer vision.
Teaching methods
Delivery type | Number | Length hours | Student hours |
Lecture | 22 | 1.00 | 22.00 |
Practical | 1 | 2.00 | 2.00 |
Practical | 9 | 2.00 | 18.00 |
Private study hours | 97.00 | ||
Total Contact hours | 42.00 | ||
Total hours (100hr per 10 credits) | 139.00 |
Methods of assessment
Coursework
Assessment type | Notes | % of formal assessment |
Practical | Programming Project | 20.00 |
In-course Assessment | Online test (Gradescope) | 30.00 |
In-course Assessment | Online test (Gradescope) | 50.00 |
Total percentage (Assessment Coursework) | 100.00 |
The coursework is on the application of a supervised learning algorithm to an existing, realistic, dataset. Students are asked to design an appropriate model, evaluate its performance, and analyse the effect of the parameters on the results. The coursework is implemented in python, and makes use of state-of-the-art machine learning libraries.
Reading list
The reading list is available from the Library websiteLast updated: 15/03/2022 16:12:19
Browse Other Catalogues
- Undergraduate module catalogue
- Taught Postgraduate module catalogue
- Undergraduate programme catalogue
- Taught Postgraduate programme catalogue
Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD