Module and Programme Catalogue

Search site

Find information on

2024/25 Undergraduate Module Catalogue

ELEC3430 Digital Communications

10 creditsClass Size: 100

Module manager: Professor Mohsen Razavi
Email: m.razavi@leeds.ac.uk

Taught: Semester 2 (Jan to Jun) View Timetable

Year running 2024/25

This module is not approved as a discovery module

Objectives

This module introduces the key principles of advanced digital communications systems, including pulse shaping, channel characteristics and multiple-access techniques in cellular mobile and optical communications systems.

Learning outcomes
On completion of this module students should be able to:

1. Discuss the engineering principles behind the physical layer in modern communications networks.
2. Explain the principles and detailed characteristics of digital modulation schemes such as BPSK, QPSK and QAM.
3. Explain the nature of communication channels and the methods used to combat signal impairments.
4. Use analytical techniques to predict the performance of digital communications systems.
5. Implement the design procedure, and subsequent analysis, for a representative communications system case study.
6. Use mathematical and simulation tools to model the performance of a typical communications subsystem.


Syllabus

Topics may include, but are not limited to:

Modern Digital Communication Systems

Review of signals; Vector representation of signals; energy vs power signals
Generic binary communication links
Optimal receivers for binary communications systems, e.g., matched-filter and correlation receivers
Performance analysis of binary communication systems
Carrier modulation techniques, e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), and quadrature amplitude modulation (QAM)
Pulse shaping; inter-symbol interference
Introduction to radio propagation, channel characteristics and countermeasures; fading channels
Multiple-access techniques

Optical Communications
Optical fibres, their characteristics (e.g. attenuation, single-mode versus multimode)
Receiver characteristics: quantum limit on receiver sensitivity
Sources and detectors. Optical amplification and regeneration
Coherent and incoherent optical communications
BER analysis of an optical OOK link
Wavelength division multiplexing and future directions in optical networking

Teaching methods

Delivery typeNumberLength hoursStudent hours
Consultation21.002.00
Lecture201.0020.00
Independent online learning hours20.00
Private study hours58.00
Total Contact hours22.00
Total hours (100hr per 10 credits)100.00

Private study

Students are expected to use private study time to consolidate their understanding of course materials, to undertake preparatory work for seminars, workshops, tutorials, examples classes and practical classes, and also to prepare for in-course and summative assessments.



Opportunities for Formative Feedback

Students studying ELEC modules will receive formative feedback in a variety of ways, including the use of self-test quizzes on Minerva, practice questions/worked examples and (where appropriate) through verbal interaction with teaching staff and/or post-graduate demonstrators.

Methods of assessment


Coursework
Assessment typeNotes% of formal assessment
In-course AssessmentCoursework 130.00
Total percentage (Assessment Coursework)30.00

Resits for ELEC and XJEL modules are subject to the School's Resit Policy and the Code of Practice on Assessment (CoPA), which are available on Minerva. Students should be aware that, for some modules, a resit may only be conducted on an internal basis (with tuition) in the next academic session. .


Exams
Exam typeExam duration% of formal assessment
Standard exam (closed essays, MCQs etc)3 hr 00 mins70.00
Total percentage (Assessment Exams)70.00

Normally resits will be assessed by the same methodology as the first attempt, unless otherwise stated

Reading list

There is no reading list for this module

Last updated: 31/07/2024 13:52:03

Disclaimer

Browse Other Catalogues

Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD

© Copyright Leeds 2019