2019/20 Taught Postgraduate Module Catalogue
GEOG5927M Predictive Analytics
15 creditsClass Size: 120
Module manager: Roger Beecham
Email: r.j.beecham@leeds.ac.uk
Taught: Semester 1 (Sep to Jan) View Timetable
Year running 2019/20
This module is not approved as an Elective
Module summary
This module explores and evaluates a range of spatial modelling techniques used in an applied context to simulate and predict consumer behaviours. Combining theory and practical examples, students are introduced to geocomputational techniques such as microsimulation and agent based modelling. Applied research-led and industry case studies are embedded throughout the module enabling students to evaluate how these approaches are used in practice for predictive analytics. Students develop an in-depth understanding of modelling techniques used to simulate or forecast population attributes and behaviours. Through linked and supported practical activities, students apply these techniques for targeted marketing, forming the basis of their individual assessed work. The module concludes with a focus on how model methodology and insights can be communicated..Students complete an assessed group work activity which requires them to evaluate the potential value of behavioural models in a particular business context area. Students will identify the potential opportunities/challenges in their specific organisational context and identify the data requirements and potential behavioural insights which could be gained. Students will present their findings in a boardroom style setting in which they are pitching for funds in order to implement their strategy.Objectives
This module seeks to:-Introduce students to the variety of geocomputational modelling techniques used to simulate and predict consumer behaviour.
-Demonstrate how predictive analytics and behavioural modelling are used for consumer analysis and the evaluation of marketing strategies, via research-led and industry case studies.
-Give students practical hands-on experience at modelling consumer behaviours and responses
-Enable students to evaluate, justify and communicate the benefits, opportunities and challenges when using predictive analytics to address specific business needs
Learning outcomes
On completion of this module students will:
1.Be able to explain and critically evaluate the role of analytics and geocomputational modelling in simulating and predicting consumer behaviours, drawing on applied research-led examples and industry practice.
2.Be able to execute geocomputational modelling, and simulation using appropriate data sources and software packages.
3.Be able to identify, evaluate and justify potential ROI from applications of predictive behavioural modelling techniques to address research needs or business objectives.
4.Be able to devise a strategy for the implementation of sophisticated modelling tools to address a business scenario, presenting and justifying their recommendations in an appropriate context.
Syllabus
Predictive analytics and applied spatial modelling
Simulating behaviour for targeted marketing
Exploring consumer behaviour through agent based models
Predictive analytics: experiences from the trenches
Communicating and persuading with consumer models
Teaching methods
Delivery type | Number | Length hours | Student hours |
Workshop | 4 | 3.00 | 12.00 |
presentation | 1 | 3.00 | 3.00 |
Lecture | 5 | 2.00 | 10.00 |
Private study hours | 125.00 | ||
Total Contact hours | 25.00 | ||
Total hours (100hr per 10 credits) | 150.00 |
Private study
Private study comprises core reading around lecture content and case study material to support assessed work.Students will work independently on their project report outside of timetabled and supported sessions; undertaking wider reading, hands on modelling, interpretation of model outputs, visualisation of model results and preparation of their written academic report.
Students will also work in small groups to complete their group project outside of formal timetabled sessions. This will include independent reading, critical thought and hands-on exploration of modelling tools, alongside group meetings to prepare their recommendations and final presentation.
Opportunities for Formative Feedback
Short question and answer sessions integrated into lectures provide an opportunity for formative assessment of student progress throughout the taught component of this module. The practical sessions related to the service optimisation project enable staff and postgraduate demonstrators to assess progress of the cohort and individual students and to provide additional support and clarification where required. Supported group work sessions provide a further opportunity to monitor student engagement and understanding prior to summative assessment.Methods of assessment
Coursework
Assessment type | Notes | % of formal assessment |
Report | Project Report (2,000 word academic report based on service optimisation project) | 50.00 |
Group Project | Group presentation – pitching a modelling strategy (2,000 word equivalent) | 50.00 |
Total percentage (Assessment Coursework) | 100.00 |
Normally resits will be assessed by the same methodology as the first attempt, unless otherwise stated
Reading list
There is no reading list for this moduleLast updated: 30/04/2019
Browse Other Catalogues
- Undergraduate module catalogue
- Taught Postgraduate module catalogue
- Undergraduate programme catalogue
- Taught Postgraduate programme catalogue
Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD