2023/24 Undergraduate Module Catalogue
LAW3287 Quantitative Social Research II: Advanced Statistical Modelling and Crime Data
20 creditsClass Size: 20
Module manager: Dr Jose Pina-Sánchez
Email: J.PinaSanchez@leeds.ac.uk
Taught: Semester 2 (Jan to Jun) View Timetable
Year running 2023/24
Pre-requisite qualifications
A basic understanding of statistical inference, regression modelling, and R is required.Pre-requisites
SLSP3065 | Quantitative Social Research |
This module is not approved as a discovery module
Module summary
This module will offer students the opportunity to enhance their data analytical skills obtained in the module “Quantitative Social Research”. Students will be introduced to a wide range of statistical models used in social science research, and to the most common assumptions invoked in such models. The focus of the module is eminently applied and based on teaching and learning activities that emphasise hands-on work with datasets on topics of interest to criminology, sociology, and social policy. This module would be an ideal choice for students wanting to undertake quantitative dissertations in social science degrees and/or students wanting to develop the key skills to conduct applied quantitative research in academic and industry settings.Objectives
This research-based module enables students to extend their quantitative skills-set to answer different types of research questions. Over the duration of the module students will:- familiarise themselves with a variety of existing key datasets used in social science research, with an emphasis on data used to study the phenomenon of crime;
- enhance their data analysis skills using the statistical software R;
- learn the most widely used statistical models in the social sciences;
- recognise some of the key assumptions made in quantitative research and the modelling strategies available to comply with (and/or relax) those assumptions;
- learn to present quantitative findings visually and succinctly.
Learning outcomes
On completion of the module, students should be able to:
- Identify the most common assumptions invoked in quantitative research.
- Identify the appropriate statistical models to analyse different types of data and research questions.
- Identify optimal modelling strategies applicable to different forms of data.
- Use self-teaching materials available online and in R to learn about other statistical model beyond those covered in the module.
- Present effectively research findings using visual methods.
Skills outcomes
Statistical modelling
Data analytics
Syllabus
Introduction and R recap
Explanatory variables
Moderating and mediating effects
Non-linear effects
Data quality
Data reduction techniques
Hierarchical data
Longitudinal data
Time-to-event data
Time-series
Agent-based modelling
Teaching methods
Delivery type | Number | Length hours | Student hours |
Computer Class | 11 | 2.00 | 22.00 |
Private study hours | 178.00 | ||
Total Contact hours | 22.00 | ||
Total hours (100hr per 10 credits) | 200.00 |
Opportunities for Formative Feedback
A formative assessment opportunity will be provided.Methods of assessment
Coursework
Assessment type | Notes | % of formal assessment |
Report | 1 x 3,000-word project report | 100.00 |
Total percentage (Assessment Coursework) | 100.00 |
Normally resits will be assessed by the same methodology as the first attempt, unless otherwise stated
Reading list
The reading list is available from the Library websiteLast updated: 18/07/2023 14:06:34
Browse Other Catalogues
- Undergraduate module catalogue
- Taught Postgraduate module catalogue
- Undergraduate programme catalogue
- Taught Postgraduate programme catalogue
Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD