2024/25 Undergraduate Module Catalogue
PHYS2150 Stellar Structure and Evolution
10 creditsClass Size: 100
Module manager: Prof. Mark Thompson
Email: m.a.thompson@leeds.ac.uk
Taught: Semester 1 (Sep to Jan) View Timetable
Year running 2024/25
Pre-requisite qualifications
A Level Maths and Physics plus a minimum of 20 credits of Level 1 Maths.This module is not approved as a discovery module
Module summary
Stellar Structure and Evolution, PHYS2150, concerns the long journey of the evolution of a star from the initial stages where the star is getting its energy from the fusion of hydrogen in its core to its final state which can be as diverse as white dwarfs, neutron stars or black holes. By bringing together many areas of physics, ranging from nuclear and quantum physics to thermodynamics and gravity, it will be shown that the evolution of a star can be worked out based on static stellar structure models and that the ultimate fate of a star depends solely on the mass with which it was born. In the process, students will be made familiar with concepts from nuclear fusion processes, radiative transfer, convective energy transport, degenerate matter, and stellar mass loss mechanisms.Objectives
By the end of this module students will be able to:- explain the physical principles and derive the equations governing the structure of stars;
- describe the solutions and compare them with the observed properties of stars;
- explain the physical changes that take place as stars evolve;
- discuss and explain the end points in the lives of stars of different initial masses;
- present observational tests of stellar evolution theory.
Learning outcomes
Students will be able to:
1. explain the physical principles and derive the equations governing the structure of stars;
2. describe the solutions and compare them with the observed properties of stars;
explain the physical changes that take place as stars evolve;
discuss and explain the end points in the lives of stars of different initial masses;
3. present observational tests of stellar evolution theory.
4. The ability to solve physical problems using mathematics and preparation and optional giving of a presentation.
Skills outcomes
The ability to solve physical problems using mathematics and preparation and optional giving of a presentation.
Syllabus
Observational context:
Colour magnitude diagrams, HR diagrams, stellar properties.
Physics of stellar structure:
Hydrostatic equilibrium, equation of state. Radiative energy transport and radiative transfer. Convective energy transport and the criteria for convective instability. Opacity sources: bound-bound, bound-free, free-free and electron scattering. Energy generation, nuclear reactions including the proton-proton chain, CNO cycle and triple-alpha process.
The structure of stars:
Solving the equations of stellar structure, structure of low and high mass main sequence stars.
The evolution of low mass stars:
Structure of red giants, physics of the degenerate core, helium flash. Horizontal branch and asymptotic giant branch. Thermal pulsing and planetary nebulae ejection. White dwarfs.
The evolution of massive stars:
Supergiant and Wolf-Rayet stars and the role of mass loss. Type II supernovae, neutron stars and black holes.
Teaching methods
Delivery type | Number | Length hours | Student hours |
Seminar | 26 | 1.00 | 26.00 |
Private study hours | 74.00 | ||
Total Contact hours | 26.00 | ||
Total hours (100hr per 10 credits) | 100.00 |
Methods of assessment
Coursework
Assessment type | Notes | % of formal assessment |
Problem Sheet | Homework | 20.00 |
Total percentage (Assessment Coursework) | 20.00 |
Resit will be in standard exam format.
Exams
Exam type | Exam duration | % of formal assessment |
Standard exam (closed essays, MCQs etc) | 2 hr 30 mins | 80.00 |
Total percentage (Assessment Exams) | 80.00 |
Students will have to complete an in-person at the end of the module. This will take place during the examinations period at the end of the semester and will be time bound.
Reading list
The reading list is available from the Library websiteLast updated: 05/09/2024
Browse Other Catalogues
- Undergraduate module catalogue
- Taught Postgraduate module catalogue
- Undergraduate programme catalogue
- Taught Postgraduate programme catalogue
Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD