This module is not currently running in the selected year. The information shown below is for the academic year that the module was last running in, prior to the year selected.
2016/17 Undergraduate Module Catalogue
MATH2016 Analysis
15 creditsClass Size: 220
Module manager: Professor Martin Speight
Email: J.M.Speight@leeds.ac.uk
Taught: Semester 2 (Jan to Jun) View Timetable
Year running 2016/17
Pre-requisite qualifications
(MATH1010 and MATH1026) or (MATH1050 and MATH1055) or equivalentThis module is mutually exclusive with
MATH2015 | Analysis 2 |
MATH2090 | Real and Complex Analysis |
This module is approved as a discovery module
Module summary
This module aims to develop the ideas of continuity, differentiability and integrability and in particular show how they can be extended to complex valued functions. It will develop students' ability to appreciate the importance of proofs, and to understand and write them.Objectives
On completion of this module, students should be able to:a) use the epsilon-delta formulation to show that a function is continuous;
b) calculate upper and lower Riemann sums;
c) apply convergence tests to series of real and complex numbers and evaluate the radius of convergence of power series;
d) use the Cauchy-Riemann equations to decide where a given function is analytic;
e) compute standard contour integrals using the fundamental theorem of the calculus, Cauchy's theorem or Cauchy's integral formula;
f) classify the singularities of analytic functions and to compute, in the case of a pole, its order and residue;
g) evaluate typical definite integrals by using the calculus of residues.
Syllabus
1. Epsilon-delta definition of continuity for a function of a real variable.
2. Riemann integration for real valued functions. Formal properties of the integral. The Fundamental Theorem of the Calculus.
3. Basic ideas of complex function theory. Limits, continuity, analytic functions, Cauchy-Riemann equations.
4. Contour integrals. Cauchy's theorem, Cauchy's integral formula.
5. Power series. Analytic functions represented as Taylor or Laurent series. Singularities. Orders of poles, Cauchy's residue theorem, evaluation of definite integrals.
Teaching methods
Delivery type | Number | Length hours | Student hours |
Workshop | 10 | 1.00 | 10.00 |
Lecture | 33 | 1.00 | 33.00 |
Private study hours | 107.00 | ||
Total Contact hours | 43.00 | ||
Total hours (100hr per 10 credits) | 150.00 |
Private study
Studying notes between lectures: 53 hoursDoing problems: 40 hours
Exam preparation: 14 hours
Opportunities for Formative Feedback
Regular problems sheetsMethods of assessment
Coursework
Assessment type | Notes | % of formal assessment |
Written Work | * | 15.00 |
Total percentage (Assessment Coursework) | 15.00 |
There is no resit available for the coursework component of this module. If the module is failed, the coursework mark will be carried forward and added to the resit exam mark with the same weighting as listed above.
Exams
Exam type | Exam duration | % of formal assessment |
Standard exam (closed essays, MCQs etc) | 2 hr 30 mins | 85.00 |
Total percentage (Assessment Exams) | 85.00 |
Normally resits will be assessed by the same methodology as the first attempt, unless otherwise stated
Reading list
The reading list is available from the Library websiteLast updated: 08/04/2016
Browse Other Catalogues
- Undergraduate module catalogue
- Taught Postgraduate module catalogue
- Undergraduate programme catalogue
- Taught Postgraduate programme catalogue
Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD