2017/18 Undergraduate Module Catalogue
MATH3044 Number Theory
15 creditsClass Size: 100
Module manager: Dr Oleg Chalykh
Email: O.Chalykh@leeds.ac.uk
Taught: Semester 2 (Jan to Jun) View Timetable
Year running 2017/18
Pre-requisite qualifications
MATH2020 or MATH2022 or equivalentThis module is approved as a discovery module
Module summary
This module is mainly about the work of the 18th Century mathematicians Euler, Lagrange and Gauss, including such highlights as Lagrange's Theorem that every positive integer is a sum of at most four squares, and Gauss's Law of quadratic reciprocity. We shall also introduce continued fractions to help solve Pell's equation.Objectives
To introduce some of the main results and methods of elementary number theory.On completion of this module, students should be able to:
a) work with divisors, primes and prime factorizations, and use the Euclidean algorithm;
b) compute with congruences, including using Fermat's and Euler's theorems;
c) use primitive roots and other methods to test numbers for primality;
d) calculate Legendre symbols using quadratic reciprocity and other methods;
e) use continued fractions to solve Pell's equation and to approximate reals by rationals.
Syllabus
- Prime factorization and applications.
- Congruences.
- Fermat's Little Theorem and its use in looking for prime factors.
- Euler's function. Wilson's Theorem.
- Pythagorean triples.
- Integers which are sums of 2,3,4 squares.
- Fermat's conjecture for Primitive roots.
- Quadratic reciprocity and applications.
- Gaussian integers and various generalisations.
- Use in solving certain Diophantine equations.
- Continued fractions.
- 'Best' approximation of reals by rationals. Pell's equation.
- Brief explanation of the principles behind public key cryptography.
Teaching methods
Delivery type | Number | Length hours | Student hours |
Lecture | 33 | 1.00 | 33.00 |
Private study hours | 117.00 | ||
Total Contact hours | 33.00 | ||
Total hours (100hr per 10 credits) | 150.00 |
Private study
Studying and revising of course material.Completing of assignments and assessments.
Opportunities for Formative Feedback
Regular problem solving assignmentsMethods of assessment
Exams
Exam type | Exam duration | % of formal assessment |
Standard exam (closed essays, MCQs etc) | 2 hr 30 mins | 100.00 |
Total percentage (Assessment Exams) | 100.00 |
Normally resits will be assessed by the same methodology as the first attempt, unless otherwise stated
Reading list
The reading list is available from the Library websiteLast updated: 26/04/2017
Browse Other Catalogues
- Undergraduate module catalogue
- Taught Postgraduate module catalogue
- Undergraduate programme catalogue
- Taught Postgraduate programme catalogue
Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD