Module and Programme Catalogue

Search site

Find information on

2020/21 Undergraduate Module Catalogue

MEDI2221 Essential Medical Science

Module manager: Dr Eldo Verghese

Taught: Semester 1 (Sep to Jan) View Timetable

Year running 2020/21

Pre-requisite qualifications

Successful completion of Year 1 MBChB


MEDI2201Control and Movement
MEDI2202Individuals and Populations 2
MEDI2217Research, Evaluation and Special Studies 2
MEDI2218Innovation, Development, Enterprise, Leadership and Safety 2
MEDI2219Campus to Clinic 2
MEDI2220RESS 2 Special Studies Project
MEDI2221Essential Medical Science
MEDI2222Clinical Pathology

Module replaces


This module is not approved as a discovery module


On completion of this module, students should be able to ...

1) Acquire a body of factual knowledge and terminology of disease processes as a basis for current and future studies.
2) Recognise the mechanisms by which disease develops.
3) Link their knowledge and understanding of normal and abnormal structure and function.
4) Gain a perspective of the importance of given diseases: whether because they are common, of biological interest, related to occupation, have social implications, illustrate important principles or are of educational interest.
5) Appreciate how the application of pathological principles to the study of diseased tissue in the histopathology laboratory relates to patient management.
6) Describe the fundamental process of inheritance, how mutations lead to inherited disease, and be aware of how these affect individuals, their families and populations at large.
7) Describe the major categories of genetic disease, understand the principles and techniques of chromosome and gene analysis, and be aware of the ethical issues in the diagnosis and treatment of inherited disease.

Learning outcomes
The module is divided into two strands. By the end of the module students should have a clear knowledge and understanding of:

Mechanisms of Disease (MoD):

1) Basic pathology terminology.
2) Basic clinical immunology.
3) Cell injury and death.
4) Acute and chronic inflammation.
5) Healing and repair.
6) Cellular adaptation.
7) Micro-organisms and health.
8) Disease neoplasia.

Genetics in Medicine (GiM):
1) The mechanisms that underpin human inheritance.
2) The role of genetic factors in health and disease.
3) How to identify patients with, or at risk of, a genetic condition.
4) How to communicate genetic information in an understandable, nondirective manner.
5) The impact genetic information may have on an individual, family and society.
6) The uses and limitations of genetic testing.
7) How to obtain current information about scientific and clinical applications of genetics, particularly from specialised genetics services.

Skills outcomes
1) Basic histopathology
2) Use of genetic tests


This module provides students with an account of the basic mechanisms of disease that is vital for any understanding of clinical medicine. There is also an emphasis on the increasingly important role that genetics plays in medicine.

Mechanisms of Disease (MoD):

1) The basic terminology and definitions used in describing disease
2) The advantages of a post-mortem examination, how a post-mortem is performed, enabling consent for post-mortem to be sought and obtained
3) The medicolegal aspects of death and death certification
4) How cells and tissues respond to injury
5) The principles and processes of acute inflammation
6) How an overactive immune system causes disease
7) How an underactive immune system causes disease
8) The principles and processes of chronic inflammation
9) The processes of tissue repair and wound healing
10) The biology of vascular disease
11) The consequences of vascular disease
12) Shock & hypertension
13) Abnormal growth, differentiation and morphogenesis
14) The classification, structure and replication of micro-organisms
15) How micro-organisms interact with eukaryotic cells
16) The classification of neoplasms
17) How neoplasms develop
18) The relationship between genes and malignant neoplasms
19) The characteristics of neoplasms

Genetics in Medicine (GiM):

1) Cell cycle, DNA replication, mitosis, meiosis and recombination.
2) DNA damage and repair, types of mutation.
3) Genes in pedigrees.
4) Patterns of inheritance.
5) Genes in populations.
6) Recombinant DNA technology, gene cloning and mapping.
7) Genetic markers.
8) Applications in clinical diagnosis and forensic medicine.
9) Genome projects.

Teaching methods

Delivery typeNumberLength hoursStudent hours
Independent online learning hours50.00
Private study hours30.00
Total Contact hours64.50
Total hours (100hr per 10 credits)144.50

Private study

Preparation for formal teaching sessions, weekly on-line knowledge tests and examination.

Opportunities for Formative Feedback

Students will be monitored through regular tutorials and performance in online assessment for learning tasks:
Students will have 10 x 1 hour tutorials and 5 x 2 hour workshops over the 10 weeks of the module. The tutorials are designed to be interactive sessions that explore the weeks learning topics, to ensure that every student has a clear understanding of the important concepts and terminology covered that week. The workshops are designed to test the students understanding of important genetic concepts.

Weekly on-line formative knowledge tests (assessment for learning) with regular feedback are used in order to build students confidence and monitor progress; there will be 15 on-line knowledge tests spread over 10 weeks of the module.

Methods of assessment

Exam typeExam duration% of formal assessment
Standard exam (closed essays, MCQs etc)4 hr 00 mins100.00
Total percentage (Assessment Exams)100.00

Normally resits will be assessed by the same methodology as the first attempt, unless otherwise stated

Reading list

The reading list is available from the Library website

Last updated: 09/09/2020 15:31:39


Browse Other Catalogues

Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD

© Copyright Leeds 2019