Module and Programme Catalogue

Search site

Find information on

2023/24 Taught Postgraduate Module Catalogue

PHYS5017M Quantum Many-Body Physics

15 creditsClass Size: 45

Module manager: Dr Zlatko Papic

Taught: Semester 2 (Jan to Jun) View Timetable

Year running 2023/24

Pre-requisite qualifications

Level 3 Physics or equivalent.


PHYS3382Advanced Quantum Mechanics

This module is not approved as an Elective

Module summary

The understanding of quantum many-body systems is one of the main challenges of modern physics. Such systems exemplify the paradigm “More is Different” – they have emergent properties which cannot be explained by studying their individual constituent particles. Examples include superfluids, superconductors, and newly discovered topological phases of matter. This module provides a foundation for quantum many-body systems based on the mathematical formalism of second quantisation and the ideas from quantum information such as entanglement. The module will take you to the cutting edge of research into quantum many-body systems, highlighting their fundamental role in condensed matter and high-energy physics, but also their promising applications in quantum computing.


On completion of this module, students should be able to demonstrate a basic knowledge and understanding of common physical laws that govern the physics of quantum systems comprising many interacting particles. Identify relevant principles and apply them to solve specific problems using the methods of quantum many-body physics.

Learning outcomes
On successful completion of the module students will be able to:

1. Understand and apply the methods of second quantisation to systems of fermions and bosons
2. Study the properties of quantum spin chains via Jordan-Wigner transformation and mapping to Majorana fermions
3. Define the concept of classical and quantum information, correlation and entanglement
4. Understand the concept of a phase of matter, symmetry-breaking order and topological order
5. Explain the concept of spontaneous symmetry breaking and quantum phase transition.


“More is Different”; Harmonic oscillators and quantum fields, second quantisation; Quantum spin chains, Majorana fermions; Spontaneous symmetry breaking and quantum phase transition; Quantum and classical information and correlation, quantum entanglement; Topological phases of matter and quantum computation.

Teaching methods

Delivery typeNumberLength hoursStudent hours
Private study hours124.00
Total Contact hours26.00
Total hours (100hr per 10 credits)150.00

Private study

As part of independent learning (128hrs), the students are expected to work through the lecture notes, solve homework problems and work on their final essay.

Opportunities for Formative Feedback

The monitoring of student progress will be performed regularly via the homework sets. In weeks 5 and 11, the standard module survey will take place.

Methods of assessment

Assessment typeNotes% of formal assessment
Problem SheetProblem Sheets40.00
Total percentage (Assessment Coursework)100.00

Students must submit a serious attempt at all assessments, in order to pass the module overall.

Reading list

The reading list is available from the Library website

Last updated: 28/04/2023 14:55:13


Browse Other Catalogues

Errors, omissions, failed links etc should be notified to the Catalogue Team.PROD

© Copyright Leeds 2019